Random Schrödinger operators with point interactions on R^d : Localization and eigenvalue statistics

Peter D. Hislop, Werner Kirsch, M. Krishna

Mathematics Department University of Kentucky Lexington, KY USA

FernUniversität in Hagen Hagen, Germany Ashoka University Haryana, India

Transport and localization in random media Columbia University

0010

Peter D. Hislop, Werner Kirsch, M. Krishna

LES overview

Main problem: Characterize the local eigenvalue statistics for random Schrödinger operators on $L^2(\mathbb{R}^d)$ or $\ell^2(\mathbb{Z}^d)$, $d \ge 2$.

Basic Schrödinger operator:

$$H_{\omega} = H_0 + \lambda V_{\omega}$$

Hilbert space: lattice $\ell^2(\mathbb{Z}^d)$ or continuum $L^2(\mathbb{R}^d)$

- H_0 deterministic (fixed) self-adjoint operator: $H_0 = -\Delta$, Laplacian
- V_{ω} random potential:

•
$$(V_{\omega}f)(k) = \omega_k f(k)$$
, on $\ell^2(\mathbb{Z}^d)$
• $(V_{\omega}f)(x) = \sum_{k \in \mathbb{Z}^d} \omega_k u(x-k)f(x)$, $L^2(\mathbb{R}^d)$

Randomness: The coupling constants $\{\omega_j \mid j \in \mathbb{Z}^d\}$

- family of independent, identically distributed random variables
- absolutely continuous probability measure having a density h₀ ∈ L₀[∞](ℝ).

Deterministic spectrum: $\Sigma \subset \mathbb{R}$ (fixed) equals $\sigma(H_{\omega})$ almost surely

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Finite-volume operators: Λ_L cube of side-length L > 0 $H_{\omega}^{\Lambda} := H_{\omega} | \Lambda_L$ plus boundary conditions

Spectrum of H^{Λ}_{ω} is discrete: $\{E^{\Lambda}_{j}(\omega)\}_{j=1}^{N}$,

- $N = |\Lambda|$ for lattice \mathbb{Z}^d
- $N = \infty$ for continuum \mathbb{R}^d

Local eigenvalue statistics Fix $E_0 \in \Sigma$ define:

$$d\xi_{\omega}^{\Lambda}(s) = \sum_{j=1}^{N} \delta(|\Lambda_L|(E_j^{\Lambda}(\omega) - E_0) - s) ds$$

Questions:

• Does ξ^{Λ}_{ω} converge to a point process as $|\Lambda| \to \infty$?

Observation of the servation of the s

Answers:

- **()** Does ξ^{Λ}_{ω} converge to a point process as $|\Lambda| \to \infty$? **YES**
- How does one characterize the limiting process? Depends on E₀ and the dimension d

CONJECTURES: 1. If $E_0 \in \Sigma$ lies in a region for which the localization length γ_L of eigenfunctions for $H^{\Lambda_L}_{\omega}$ is small compared to L,

$$\frac{\gamma_L}{L} \to 0, \quad L \to \infty,$$

then the limiting point process ξ_{ω} is a **Poisson point process**. 2. If $E_0 \in \Sigma$ lies in a region for which the localization length γ_L of eigenfunctions for $H_{\omega}^{\Lambda_L}$ is large compared to L,

$$\frac{\gamma_L}{L}>0, \qquad L\to\infty,$$

then the limiting point process ξ_{ω} is the same as **random matrix theory** *GOE*.

A Toy Model: Scaled disorder

Scaled disorder random Anderson model:

$$H^{(n)}_{\omega} = H^{(n)}_0 + \sum_{j=-n}^n \frac{\sigma \omega_j}{\langle n \rangle^{\alpha}} \Pi_j, \quad \mathcal{H} = \ell^2([-n, n]).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

 $H_0^{(n)}$: Finite difference Laplacian on [-n, n] with simple boundary conditions

$$(\Pi_j f)(k) = f(j)\delta_{jk}$$
 and $\sigma > 0$

Localization length: $\gamma_n \sim \frac{n^{2\alpha}}{\sigma^2}$

Scaling ratio: $\frac{\gamma_n}{n} = \frac{n^{2\alpha-1}}{\sigma^2}$

LES overview

A Toy Model: Scaled disorder

Transition in LES depending on $\alpha \ge 0$. Scaling regimes:

$$0 \le lpha < rac{1}{2}$$
 $rac{\gamma_n}{n} o 0$ $LES = Poisson$
 $lpha = rac{1}{2}$ $rac{\gamma_n}{n} = 1$ critical
 $rac{1}{2} < lpha$ $1 \le rac{\gamma_n}{n} o \infty$ $LES = Clock$

A D > <
 A P >
 A

글 🖌 🔺 글 🕨

э

Clock is the LES of the Laplacian H_0 on $\ell^2(\mathbb{Z})$.

Peter D. Hislop, Werner Kirsch, M. Krishna

Another tool: LSD, the level spacing distribution

Order eigenvalues of H^{Λ}_{ω} : $E^{\Lambda}_{1}(\omega) \leq E^{\Lambda}_{2}(\omega) \leq \cdots \leq E^{\Lambda}_{N}(\omega)$

For $E_0 \in \Sigma$, set $I_{\Lambda} = [E_0 - \frac{1}{|\Lambda|^{1-\epsilon}}, E_0 + \frac{1}{|\Lambda|^{1-\epsilon}}]$; $n(E_0)$ Density of states.

$$LSD^{\Lambda}_{\omega}(x;I_{\Lambda}) = \frac{\#\{j \mid E^{\Lambda}_{j}(\omega) \in I_{\Lambda}, \ |\Lambda|n(E_{0})(E^{\Lambda}_{j+1}(\omega) - E^{\Lambda}_{j}(\omega)) \ge x\}}{\#\{j \mid E^{\Lambda}_{j}(\omega) \in I_{\Lambda}\}}$$

$$LSD(x) = \lim_{|\Lambda| \to \infty} LSD^{\Lambda}_{\omega}(x; I_{\Lambda}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Behavior of LSD(x) depends on E_0 in *localized* or *delocalized* regime.

LES overview

Poisson: Density of the LSD(s) is exponential: $P(s) = e^{-s}$. **GOE**: Density of LSD(s) follows the Wigner surmise: $P(s) = Ase^{-Bs^2}$, A, B > 0.

LES Results

Random Schrödinger operators on \mathbb{Z}^d

- Minami: $E_0 \in \Sigma^{CL}$, LES ξ_{ω} is a Poisson point process.
- Germinet-Klopp: LES for unfolded eigenvalues and LSD with exponential density.

Random Schrödinger operators on \mathbb{R}^d

- Hislop-Krishna: LES always have limit points ξ_{ω} that are compound Poisson processes and LSD has exponential density.
- Hislop, Kirsch, Krishna: random Schrödinger operators with δ-interactions, LES is Poisson and exponential LSD density.
- Deitlein-Elgard: Anderson-type random Schrödinger operators has LES Poisson at the bottom of the spectrum.

Random δ -interactions: Model and results

The formal Hamiltonian for random δ -interactions:

$$\mathcal{H}_\omega = -\Delta + \sum_{j \in \mathbb{Z}^d} \omega_j \delta(x-j),$$

on
$$L^{2}(\mathbb{R}^{d})$$
, for $d = 1, 2, 3$.

- [H1] The coupling constants $\{\omega_j \mid j \in \mathbb{Z}^d\}$ form a family of independent, identically distributed random variables with an absolutely continuous probability measure having a density $h_0 \in L_0^{\infty}(\mathbb{R})$.
- [H2] The support of h_0 is the interval [-b, -a] for some finite constants $0 < a < b < \infty$.

Rigorous description of H_{ω} is given via the Green's function.

Localization for the random δ -interaction model

 H_{ω} is an ergodic, random Schrödinger operator. Deterministic spectrum of H_{ω} : Σ .

$$\Sigma = \overline{\cup_{\lambda \in \mathrm{supp}\ h_0} H_\lambda}$$

for the periodic Schrödinger operator $H_{\lambda} = -\Delta + \sum_{j \in \mathbb{Z}^d} \lambda \delta(x - j)$. $E_0(k; \lambda)$: first band function for periodic H_{λ}

Deterministic spectrum:

$$E_0(0; -1a) < 0, \quad [E_0(0; -1/a), E_0(k_0; -1/b)] \cup [0, \infty) \subset \Sigma,$$

イロト 不得 トイヨト イヨト

3

where $k_0 \in \mathcal{B}$ is the point where E_0 has its minimum.

Localization for the random δ -interaction model

Localization at negative energies:

Theorem

There exists an finite energy $\tilde{E}_0 < 0$ so that $\Sigma_{pp} \cap (-\infty, \tilde{E}_0] \subset \Sigma$ is almost surely nonempty. Furthermore, for any $\phi \in L^2_0(\mathbb{R}^d)$, any integer $q \in \mathbb{N}$, and any interval $I \subset (-\infty, \tilde{E}_0]$, we have

$$\mathbb{E}[\sup_{t>0}\{\|\|x\|^{q/2}e^{-itH_{\omega}}E_{\omega}(I)\phi\|_{\mathrm{HS}}\}]<\infty,$$

イロト イヨト イヨト -

Main result: Eigenvalue statistics in the localization regime

Localization regime: $\Sigma^{\rm CL}:$ energy regime with pure point spectrum and dynamical localization.

Local Eigenvalue Statistics

 $\Lambda_L = [0, L]^d$ and local Schrödinger operators $H^L_{\omega} := H_{\omega} | \Lambda_L$. Eigenvalues: $\{E_j^L(\omega)\}$.

Rescaled local eigenvalue point process at $E_0 \in \Sigma^{CL}$:

$$d\xi^L_\omega(s) := \sum_j \delta(|\Lambda_L|(E^L_j(\omega) - E_0) - s) \ ds$$

イロト 不得 トイヨト イヨト 二日

Main result: Eigenvalue statistics in the localization regime

Theorem

Consider a fixed energy $E_0 \in (-\infty, \tilde{E}_0] \subset \Sigma^{CL}$ for which the density of states is nonpositive: $n(E_0) > 0$. The local eigenvalue statistics ξ_{ω}^L for the random point interaction model on \mathbb{R}^d , for d = 1, 2, 3, converges weakly to a Poisson point process with intensity measure $n(E_0)ds$.

This means that for $f \in C_0^+(\mathbb{R})$:

$$\lim_{L\to\infty} \mathbb{E}\left\{e^{-t\xi_{\omega}^{L}(f)}\right\} = \mathbb{E}\left\{e^{-t\xi_{\omega}^{P}(f)}\right\},\,$$

where

$$\mathbb{E}\left\{e^{-t\xi_{\omega}^{P}(f)}\right\} = e^{n(E_{0})\int_{\mathbb{R}}\left(e^{-tf(x)}-1\right) dx}$$

イロト イポト イヨト イヨト

Overview: Eigenvalue statistics for Random Schrödinger operators Introduction: Random Schrödinger operators with δ -interactions Idea of the proof of the main theorem Appendix: Rank one perturbations

Green's function definition of the Hamiltonian

Remark: Consider d = 3 when explicit formulae are used.

The Green's function for a cube $\Lambda_I \subset \mathbb{R}^3$ with Dirichlet boundary conditions is

$$G_0^L(x,y;z) = rac{e^{-i\sqrt{z}\|x-y\|}}{4\pi\|x-y\|} - c_{z,y}^L(x), \ \ x,y \in \Lambda_L.$$

Corrector: $c_{z,v}^{L}(x)$ for the boundary condition

Let $\tilde{\Lambda}_I := \Lambda_L \cap \mathbb{Z}^3$ and put a δ -interaction at each point with coefficient ω_i .

The Green's function $G_{\omega}^{L}(x, y; z)$ for H_{ω}^{L} and d = 1, 2, 3 is related to the Green's function $G_0^L(x, y; z)$ for the unperturbed operator $H_0^L = -\Delta^L$ by

$$G_{\omega}^{L}(x,y;z) = G_{0}^{L}(x,y;z) + \sum_{j,k=1}^{|\tilde{h}_{L}|} G_{0}^{L}(x,j;z) [\mathcal{K}_{\omega}^{L}(z)^{-1}]_{jk} G_{0}^{L}(k,y;z).$$

Green's function definition of the Hamiltonian

Matrix Schrödinger operator:

Let
$$N := |\Lambda_L| = L^d$$
. $K^L_{\omega}(z) : \mathbb{C}^N \to \mathbb{C}^N$

$$[K^L_{\omega}(z)]_{jk} := t^L(z) + v_{\omega}$$

where:

• Kinetic energy
$$t^{L}(z)$$
:

$$t_{jk}^L(z) := c_{z,k}^L(j)\delta_{jk} - G_0^L(j,k;z)(1-\delta_{jk}),$$

• Random diagonal potential v_{ω} :

$$[\mathbf{v}_{\omega}]_{jk} := \frac{1}{\alpha_{d,k}} \delta_{jk}.$$

The off-diagonal part of $t^{L}(z)$ decays exponentially.

$$e_3(z) = \frac{i\sqrt{z}}{4\pi}$$
, and $\alpha_{3,j} = \omega_j$.

Peter D. Hislop, Werner Kirsch, M. Krishna

Estimates for finite-volume operators: Local operators and spectral averaging

Local operators: $H_{\omega}^{L} := H_{\omega} | \Lambda_{L}$, with Dirichlet boundary conditions.

Spectral averaging of the trace.

Consider
$$\mathbb{E}_{\omega_j}\{\operatorname{Tr} \mathcal{E}_{\mathcal{H}_{\omega}^L}(I)\} := \mathbb{E}_{\omega_j}\{X_{\omega_j,\omega_i^{\perp}}^L(I)\}$$
, parameters ω_j^{\perp} fixed.

Stone's formula for the spectral projection $E_{H_{co}^{L}}(I)$:

$$E_{H^L_{\omega}}(I) = \frac{1}{\pi} \lim_{\epsilon \to 0} \int_I \Im R^L_{\omega}(E + i\epsilon) \ dE.$$

 $R_0^L(z)$ is analytic away from \mathbb{R}^+ . For E < 0, the resolvent formula yields

$$E_{\mathcal{H}_{\omega}^{L}}(I) = \frac{1}{\pi} \lim_{\epsilon \to 0} \sum_{\ell, m \in \tilde{\Lambda}_{L}} \int_{I} \Im[R_{0}^{L}(\cdot, \ell; E)[K_{\omega_{j}^{\perp}}^{L}(E + i\epsilon; \omega_{j})^{-1}]_{\ell m} R_{0}^{L}(m, \cdot; E)].$$

< ロ > < 同 > < 回 > < 回 > .

Estimates for finite-volume operators: Spectral averaging

The trace is expressible as the integral over the diagonal of the corresponding Green's functions:

$$\begin{aligned} X^{L}_{\omega_{j},\omega_{j}^{\perp}}(I) \\ &= \frac{1}{\pi} \lim_{\epsilon \to 0} \int_{I} \sum_{\ell,m \in \tilde{\Lambda}_{L}} \int_{\Lambda_{L}} G^{L}_{0}(x,\ell;E) \Im[\mathcal{K}^{L}_{\omega_{j}^{\perp}}(E+i\epsilon;\omega_{j})^{-1}]_{\ell m} G^{L}_{0}(m,x;E) dEd^{d}x. \end{aligned}$$

Differential inequality method: For any $\xi \in \ell^2(\tilde{\Lambda}_L)$, there is a constant $C_1 > 0$ so that

$$\sup_{\epsilon \to 0} \left| \int h_0(\omega_j) \langle \xi, [\mathcal{K}^L_{\omega_j^\perp}(E + i\epsilon; \omega_j)]^{-1} \xi \rangle \ d\omega_j \right| \leq C_1 \|\xi\|^2.$$

Estimates for finite-volume operators: Wegner estimate

The above formulas immediately yield:

Theorem

Let $E_0 < 0$ and consider $\eta > 0$ so that

$$I_{\eta} := [E_0 - \eta, E_0 + \eta] \subset (-\infty, 0).$$

There exists a finite positive constant $C_W > 0$, depending on the dimension d and $|E|_0^{-1}$, so that

$$\begin{split} \mathbb{P}\{\mathrm{dist}(\sigma(H_{\omega}^{L}), E_{0}) < \eta\} &= \mathbb{P}\{\mathrm{Tr}E_{H_{\omega}^{L}}(I_{\eta}) \geq 1\}\\ &\leq \mathbb{E}\{\mathrm{Tr}E_{H_{\omega}^{L}}(I_{\eta})\}\\ &\leq C_{W}|\Lambda_{L}|\eta. \end{split}$$

Estimates for finite-volume operators: Wegner estimate

Proof of the Wegner estimate: Apply spectral averaging with $\xi_m = G_0^L(m, x; E)$ and obtain:

$$\mathbb{E}_{\omega_j}\{X^{(L)}_{\omega_j,\omega_j^{\perp}}(I)\} \leq C_1 \sum_{m \in \tilde{\Lambda}_L} \frac{1}{\pi} \int_I \int_{\Lambda_L} G_0^L(x,m;E)^2 dE d^d x.$$

Exponential decay of $G_0^L(x, m; E)$ implies x-integral is $\mathcal{O}(1)$. After the trivial E-integration, we obtain

$$\mathbb{E}_{\omega_j}\{X_{\omega_j,\omega_j^{\perp}}^{(L)}(I)\} \leq C_1|\Lambda_L||I|.$$

< ロ > < 同 > < 回 > < 回 > .

Constant $C_1 > 0$ is uniform in ω_i^{\perp} and depends on E_0 .

Estimates for finite-volume operators: Minami estimate

Theorem

Let $E_0 < 0$ and consider $\eta > 0$ so that $I_{\eta} := [E_0 - \eta, E_0 + \eta] \subset (-\infty, 0)$. There exists a finite positive constant $C_M > 0$, depending on the dimension d and $|E|_0^{-1}$, so that

$$\mathbb{E}\{X^L_{\omega}(I)(X^L_{\omega}(I)-1)\} \leq C_M |\Lambda_L|^2 \eta^2.$$

Step One: One-parameter perturbation. The variation of parameter, say ω_i , results in a rank one perturbation:

$$\mathcal{K}^L_{\omega_j^\perp}(z;\omega_j)^{-1}-\mathcal{K}^L_{\omega_j^\perp}(z; au_j)^{-1}$$

is a rank-one matrix so:

$$R_{\omega_j}^{L}(z) - R_{\tau_j}^{L}(z)$$

$$= \sum_{\substack{l \ m \in \widetilde{a} \\ \text{Peter D. Histon Werner Kirsch M. Krishpa}} R_0^{L}(\cdot, k; z) [K_{\omega_j^{\perp}}^{L}(z; \omega_j)^{-1} - K_{\omega_j^{\perp}}^{L}(z; \tau_j)^{-1}]_{km} R_0^{L}(m, \cdot; z)$$

$$= \sum_{\substack{l \ m \in \widetilde{a} \\ \text{Peter D. Histon Werner Kirsch M. Krishpa}} R_{\omega_j}^{L}(z; \omega_j)^{-1} - K_{\omega_j^{\perp}}^{L}(z; \tau_j)^{-1}]_{km} R_0^{L}(m, \cdot; z)$$

Estimates for finite-volume operators: Minami estimate

Step Two: Estimate on the eigenvalue counting function. For such $z = -E \ll \Sigma_0 = \inf \Sigma$, the resolvent $R^L_{\omega}(z)$ is a self-adjoint operator.

Let I = (a, b). H^L_{ω} has an eigenvalue in I if and only if $R^L_{\omega}(z)$ has an eigenvalue in $I_z := ((b - z)^{-1}, (a - z)^{-1})$.

The eigenvalue counting function for H^L_{ω} and $R^L_{\omega}(z)$ satisfy:

$$X_{\omega}^{L}(I) := \mathrm{Tr} E_{H_{\omega}^{L}}(I) = \mathrm{Tr} E_{R_{\omega}^{L}(z)}(I_{z}).$$

Variation of configurations $(\omega_j, \omega_j^{\perp})$ and $(\tau_j, \omega_j^{\perp})$ results in:

$$X^L_{\omega_j}(I) - X^L_{\tau_j}(I) = \operatorname{Tr} E_{R^L_{\omega_j}(z)}(I_z) - \operatorname{Tr} E_{R^L_{\tau_j}(z)}(I_z).$$

イロト 不得 トイヨト イヨト 二日

Estimates for finite-volume operators: Minami estimate

The difference of the resolvents $R_{\omega_j}^L(z) - R_{\tau_j}^L(z)$ is a rank one operator. It follows that

$$\begin{split} |X_{\omega_j}^L(I) - X_{\tau_j}^L(I)| &= |\operatorname{Tr} E_{R_{\omega_j}^L(z)}(I_z) - \operatorname{Tr} E_{R_{\tau_j}^L(z)}(I_z)| \\ &\leq 1. \end{split}$$

If, for example, $X_{\omega_i}^L(I) \ge 1$, then

$$0 \leq X^L_{\omega_j}(I) - 1 \leq X^L_{\tau_j}(I).$$

イロト 不得 トイヨト イヨト

3

Estimates for finite-volume operators: Minami estimate

Step three: Conclusion of the proof.

Take $\tau_j \in [c, d]$, an interval disjoint from [a, b] and with the same distribution as ω_j :

$$\begin{split} \mathbb{E}\{X_{\omega}^{L}(I)(X_{\omega}^{L}(I)-1)\} &\leq \mathbb{E}_{\tau_{j}}\mathbb{E}\{X_{\omega_{j},\omega_{j}^{\perp}}^{L}(I)(X_{\tau_{j},\omega_{j}^{\perp}}^{L}(I))\}\\ &\leq C_{1}|\Lambda_{L}||I|\left(\mathbb{E}_{\tau_{j}}\mathbb{E}_{\omega_{j}^{\perp}}\{X_{\tau_{j},\omega_{j}^{\perp}}^{L}(I)\}\right)\\ &\leq C_{M}(|\Lambda_{L}||I|)^{2}, \end{split}$$
(1)

イロト 不得 トイヨト イヨト

using the above result for $(\tau_j, \omega_j^{\perp})$.

Estimates for finite-volume operators: Localization bounds

Fractional moment bound for $K^{\Lambda}_{\omega}(E)$, E < 0.

Proposition

For any $s \in (0, 1)$, there are finite, positive constants $C_s > 0$ and $\alpha_{s,d} > 0$, uniform in L > 0, so that for any E < 0, we have

$$\mathbb{E}\{|[K^{\Lambda}_{\omega}(-E)^{-1}]_{ij}|^s\} \leq C_s e^{-s\alpha_{s,d}||i-j||},$$

for any $i, j \in \tilde{\Lambda}_L$.

The proof of this uses the fractional moment method of Aizenman and Molchanov.

イロト 不得 トイヨト イヨト 二日

Overview: Eigenvalue statistics for Random Schrödinger operators Introduction: Random Schrödinger operators with δ -interactions Estimates for finite-volume operators Local eigenvalue statistics Idea of the proof of the main theorem

References Appendix: Rank one perturbations

A uniformly asymptotically negligible array: uana

Decomposition:

$$\Lambda_L = \cup_{\rho=1}^{N_L} \Lambda_{\ell,\rho}$$

Side length: $\ell = L^{\alpha}$, $0 < \alpha < 1$.

Number of subcubes

$$N_L = (L/\ell)^d$$

 $H^{\ell,p}_{\omega}$ the local point interaction Hamiltonian restricted to $\Lambda_{\ell,p}$ with Dirichlet boundary conditions.

- The local operators: $\sigma(H_{\omega}^{L})$ and $\sigma(H_{\omega}^{\ell,p})$ discrete.
- $\label{eq:sectra} \textbf{@} \mbox{ The spectra of the local Laplacians and lower semibounded and lie in the half-axis <math display="inline">[\Sigma_0,\infty),\mbox{ for }\Sigma_0:=\inf\Sigma<0\mbox{ finite.}$
- The Wegner, Miniami, and localization estimates are valid for these local random operators at negative energies.

References <u>Appendix</u>: Rank one perturbations

A uniformly asymptotically negligible array: uana

LES for each local Hamiltonian $H^{\ell,p}_{\omega}$: $\eta^{\ell,p}_{\omega}$:

$$d\eta^{\ell,p}_\omega(s):=\sum_j \delta(|\mathsf{A}_L|(E^{\ell,p}_j(\omega)-E_0)-s)\;ds$$

The collection $\{\eta_{\omega}^{\ell,p}\}_{p=1}^{N_L}$ forms a **uniformly asymptotically negligible array** (*uana*) of independent random point processes:

$$\lim_{L\to\infty} \sup_{1\le p\le N_L} \mathbb{P}\{\eta_{\omega}^{\ell,p}(I)>0\}=0$$

This follows from the Wegner estimate for the local Hamiltonians. Define the point process

$$\varsigma_{\omega}^{L} = \sum_{p=1}^{N_{L}} \eta_{\omega}^{\ell,p}$$

イロト 不得 トイヨト イヨト

э

Properties of the process ζ_{ω}^{Λ} .

Appendix: Rank one perturbations

LES for a uniformly asymptotically negligible array

The density of states n(E) exists, belongs to $L^1_{loc}(\mathbb{R})$. These results follow from the Lipschitz continuity of the IDS

Condition 1: Intensity of the limiting process

Proposition

For the uana
$$\{\eta_{\omega}^{\ell,p}\}$$
, and any $E_0 \in \Sigma^{CL}$ for which $n(E_0) \neq 0$, we have

$$\lim_{L\to\infty}\sum_{p=1}^{N_L}\mathbb{P}\{\eta_{\omega}^{\ell,p}(I)=1\}=n(E_0)|I|.$$

イロト 不得 トイヨト イヨト

э

> References Appendix: Rank one perturbations

LES for a uniformly asymptotically negligible array

Condition 2: Multiple eigenvalues are rare

Proposition

For the uana $\{\eta^{\ell,p}_{\omega}\}$, we have

$$\lim_{L\to\infty}\sum_{p=1}^{N_L}\mathbb{P}\{\eta^{\ell,p}_\omega(I)\geq 2\}=0.$$

Conclusion:

Theorem

For $E_0 \in \Sigma^{CL} \cap (-\infty, 0)$, and $n(E_0) > 0$, the process ζ_{ω}^L constructed from the uana $\{\eta_{\omega}^{\ell,p}\}$ converges weakly to a Poisson point process with intensity measure $n(E_0)ds$.

Appendix: Rank one perturbations

Approximation by a uana

Theorem

For $E_0 \in \Sigma^{CL} \cap (-\infty, 0)$, the local eigenvalue point processes ξ_{ω}^L associated with H_{ω}^L , and the local point process ζ_{ω}^L , associated with the uana have the same weak limit point. This is the Poisson point process with intensity measure $n(E_0)ds$.

Localization estimates are used to prove

$$\xi^L_{\omega}(f) - \zeta^L_{\omega}(f) o 0, \quad L o \infty$$

Reduce to showing: For $z := E_0 + \frac{\zeta}{|\Lambda_l|}$ with $\zeta = \sigma + i\tau$, with $\tau > 0$ and $\sigma \in \mathbb{R}$:

$$\lim_{|\Lambda|\to\infty} \mathbb{E}\left\{ \left| \frac{1}{|\Lambda_L|} \operatorname{Tr} \Im R_{\omega}^{L}(z) - \frac{1}{|\Lambda_L|} \sum_{p=1}^{N_L} \operatorname{Tr} \Im R_{\omega}^{\ell,p}(z) \right| \right\} = 0.$$

Local eigenvalue statistics

- A. Deitlein, A. Elgart, Level spacing for continuum random Schrödinger operators with applications, preprint.
- F. Germinet, F. Klopp, Spectral statistics for random Schrödinger operators in the localized regime, J. Eur. Math. Soc. 16 (2014), no. 9, 1967-2031.
- P. D. Hislop, M. Krishna, Eigenvalue statistics for random Schrödinger operators with non rank one perturbations, Comm. Math. Phys. 340 (2015), no. 1, 125–143.
- N. Minami, Local fluctuations of the spectrum of a multidimensional Anderson tight-binding model, Commun. Math. Phys. 177, 709–725 (1996).

References

Delta interactions

- S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden, Solvable models in quantum mechanics, Texts and Monographs in Physics, New York: Springer-Verlag, 1988.
- Ph. Blanchard, R. Figari, A. Mantile, *Point interactions Hamiltonians in bounded domains*, J. Math. Phys. 48, 082108 (2007); doi 10.1063/1.2770672.

Random delta interactions

- P. D. Hislop, W. Kirsch, M. Krishna, Spectral and dynamical properties of random models with nonlocal singular interactions, Math. Nachr. 278 No. 6, 627–664 (2005).
- P. D. Hislop, W. Kirsch, M. Krishna, Eigenvalue statistics for Schrödinger operators with random point interactions on ℝ^d, d = 1,2,3, preprint.
- H. Ueberschaer, Delocalization for random displacement models with Dirac masses, arXiv:1604.01230.

э

Scaled disorder model

- E. Kritchevski, B. Valkó, B. Virág, The scaling limit of the critical one-dimensional random Schrödinger operator. Comm. Math. Phys. 314 (2012), no. 3, 775806.
- S. Kotani, F. Nakano, On the level statistics problem for the one-dimensional Schrödinger operator with random decaying potential. Spectral and scattering theory and related topics, 1924, RIMS Kkyroku Bessatsu, B45, Res. Inst. Math. Sci. (RIMS), Kyoto, 2014.
- P. D. Hislop, F. Klopp, Local eigenvalue statistics for one-dimensional scaled Schrödinger operators, in preparation.

Appendix: Rank one perturbations

Appendix: Estimates for finite-volume operators: Rank-one perturbations

Let A and B be to self-adjoint operators with B rank one. General result:

Proposition

Let A and B be self-adjoint operators with $B = \prod_{\varphi}$ rank one, $\|\varphi\| = 1$. Let $I := [a, b] \subset \mathbb{R}$ be an interval so that $\sigma(A) \cap [a, b]$ is discrete.

$|\operatorname{Tr}[E_A(I)] - \operatorname{Tr}[E_{A+B}(I)]| \leq 1.$

2 If $Tr[E_A(I)] \ge 1$, we have

$$0 \leq \operatorname{Tr}[E_A(I)] - 1 \leq \operatorname{Tr}[E_{A+B}(I)].$$

イロト イボト イヨト イヨト

Appendix: Rank one perturbations

Appendix: Estimates for finite-volume operators: Rank-one perturbations

Assumption: The vector φ is cyclic for A, and hence for A + B.

We define two measures

$$\mu_{A}^{\varphi}(\cdot) := \langle \varphi, \mathsf{E}_{A}(\cdot)\varphi \rangle, \quad \text{and} \quad \mu_{A+B}^{\varphi}(\cdot) := \langle \varphi, \mathsf{E}_{A+B}(\cdot)\varphi \rangle.$$

Lemma

Under the hypotheses of the proposition, for any $x \in \sigma(A) \cap [a, b]$, we have

 $\mu_A^{\varphi}(\{x\}) \neq 0,$

and similarly, for any $y \in \sigma(A + B) \cap [a, b]$, we have

 $\mu^{\varphi}_{A+B}(\{y\}) \neq 0.$

Appendix: Rank one perturbations

Appendix: Estimates for finite-volume operators: Rank-one perturbations

Let $\{x_1 \le x_2 \le \ldots \le x_j\}$ be the eigenvalues of A in [a, b]. Similarly, let $\{y_1 \le y_2 \le \ldots \le y_t\}$ be the eigenvalues of B in [a, b].

Lemma

The map

$$F_A(E) := \langle \varphi, R_A(E) \varphi \rangle$$

restricted to each interval $F_A : (x_i, x_{i+1}) \to \mathbb{R}$ is bijective for all i = 1, ..., k - 1. Similarly, the map

$$F_{A+B}(E) := \langle \varphi, R_{A+B}(E) \varphi \rangle$$

restricted to each interval F_{A+B} : $(y_j, y_{j+1}) \rightarrow \mathbb{R}$ is bijective for all $j = 1, \dots, \ell - 1$.

Appendix: Estimates for finite-volume operators: Rank-one perturbations

Lemma

The poles of F_A and F_{A+B} in [a, b] are intertwined. In each interval (x_i, x_{i+1}) , there is exactly one pole y_j of F_{A+B} and in each interval (y_j, y_{j+1}) , there is exactly one x_i .

This shows that the effect of the rank one perturbation B is to change the number of eigenvlaues in [a, b] by at most one.

イロト イポト イヨト イヨト